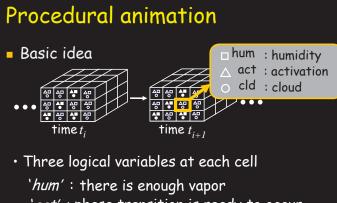
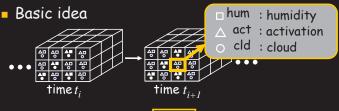
Animation of Clouds

Animation of Clouds

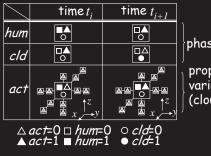

- Realistic motion
 - complex dynamics of cloud formation
 - phase transition effects

procedural simulation (cellular automata)


physically-based simulation (fluid simulation)

'act' : phase transition is ready to occur

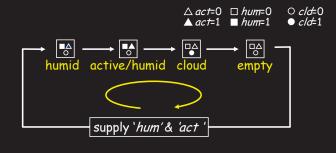
'cld' : clouds exist or not


Procedural animation

- Status of variables: 0 or 1
- Simple transition rules by Boolean operations - cloud growth
 - cloud extinction
 - advection by wind

Procedural animation

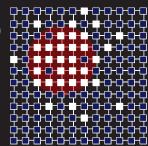
Rules for cloud growth [Nage192]



phase transition effects propagation of activation variables (cloud growth)

act:activation *hum*:humidity *cld*:cloud

Procedural animation


Rules for cloud extinction

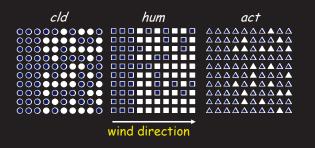
Formation and extinction occur repeatedly

Procedural animation

- Controlling distribution of clouds
- 1 humid area (spheres/elipsoids in 3D)
- 2 change 'hum' & 'act' from 0 to 1

Procedural animation

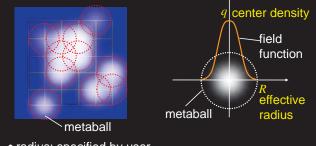
- Controlling distribution of clouds
- 1 humid area (spheres/elipsoids in 3D)
- 2 change '*hum'* & 'act' from 0 to 1
- 3 clouds are formed


4 change '*cld* from 1 to 0

- Controlling red area
 - → Controlling cloud shapes & motion

Procedural animation

- Advection by wind
 - Shifting variables toward the wind direction


Procedural animation

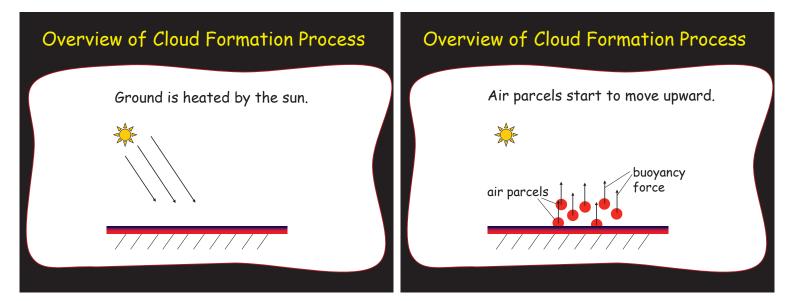
Procedural animation

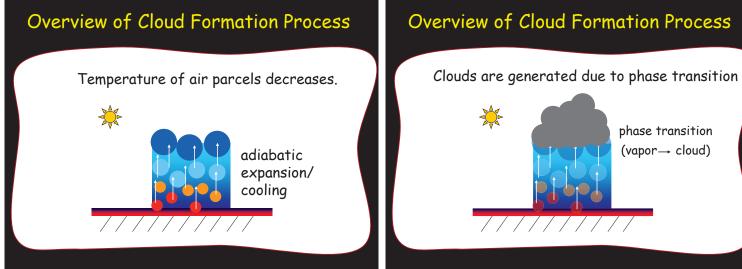
🗕 demo 🔳

Procedural animation

Creation of continuous distribution

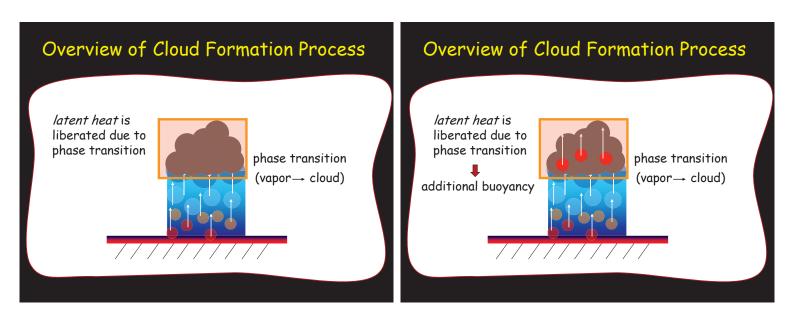
• radius: specified by user • center density: filtered value

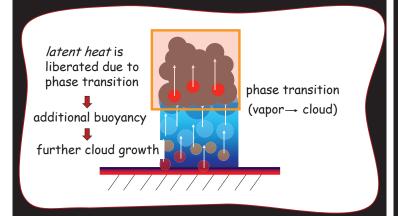

Example


Modeling of Clouds

- Image-based modeling
 - Use of 2D images to synthesize density distribution of 3D clouds
- Procedural animation
 - Cellular automata: simple rules to compute motions of clouds
- Physically-based simulation
 - Numerical simulation of atmospheric fluid dynamics

Cloud Formation


- Required physical quantities
 - Velocity, water vapor, water droplet (cloud), temperature of atmosphere
- Phase transition between vapor and droplet
 - Generation/extinction of clouds
 - Cloud growth to higher region



Overview of Cloud Formation Process

phase transition (vapor \rightarrow cloud)

Equations for cloud simulation

- Velocity of atmosphere Navier-Stokes equation + buoyancy force
- Temperature of atmosphere adiabatic cooling, latent heat, heat from ground
- Cloud formation/extinction phase transition between vapor and droplets

Numerical Simulation

 $\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \nabla p + \mathbf{f} + \mathbf{B}$ $\nabla \cdot \mathbf{u} = \mathbf{0}$ $\mathbf{B} = k_b \frac{T - \overline{T_0}}{T_0} \mathbf{z}$ $\frac{\partial T}{\partial t} = -(\mathbf{u} \cdot \nabla)T - \Gamma_d v_z + QC_c + S_T$ $\frac{\partial q_c}{\partial t} = -(\mathbf{u} \cdot \nabla)q_c + C_c$ $\frac{\partial q_v}{\partial t} = -(\mathbf{u} \cdot \nabla) q_v - C_c$

Velocity of atmosphere

Temperature of atmosphere

Water vapor and water droplet

Simulation Results

Cumulus clouds

Number of grids : 150 × 120 × 50 Computational time: 4 sec./step

computer : Pentium III 1.2GHz

Simulation Results

Cumulonimbus

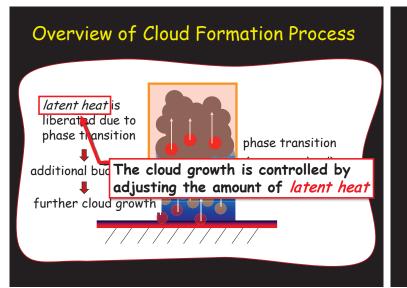
Number of grids : 150×120×100 Computational time: 8 sec./step

computer: Pentium III 1.2GHz

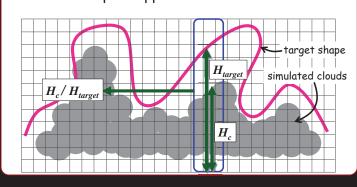
Video

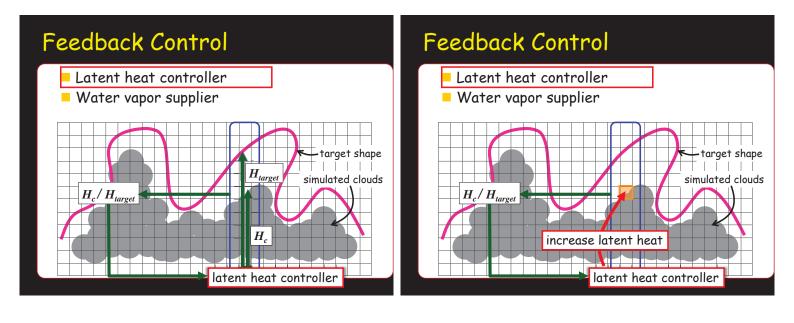
<u>VIDEO</u>

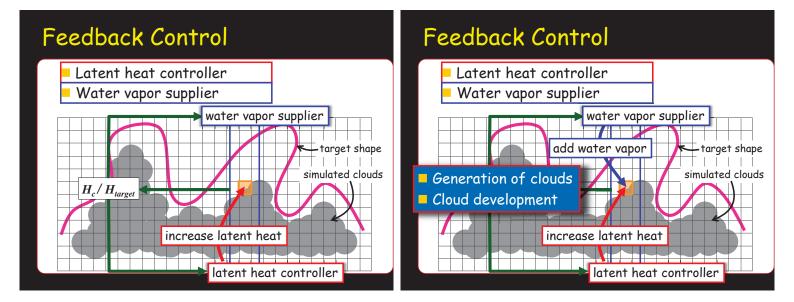
Control of Cloud Formation


User draws contour line of the desired shape.

Control of Cloud Formation

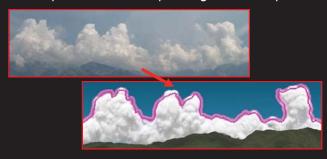

- User draws contour line of the desired shape.
- System controls simulation and generates realistic clouds





Feedback Control

Latent heat controllerWater vapor supplier


Example

Typical cloud shapes
No. of grid points : 320 × 80 × 100
Comp. time : 7.6 sec. per single time step

Example using Photograph

Creating target shape from real photograph
No. of grid points : 320 × 80 × 100
Comp. time : 7.6 sec. per single time step

Unnatural Clouds

 Creating holes inside clouds to form skull-shaped clouds

No. of grid points : 240 × 80 × 100 Comp. time : 5.6 sec. per single time step

