
Extracting a Gröbner Basis from Inexact Input ∗

Kosaku Nagasaka
Kobe University †

E-mail: nagasaka@main.h.kobe-u.ac.jp

Abstract

Computing a Gröbner basis with inexact input is one of the challenging problems
in symbolic-numeric computations, and has been studied by many researchers from the
following points of view: 1) numerical stability and 2) mathematical correctness. However,
it is not yet studied from the data mining point of view: how to extract a meaningful
result from the given inexact input when the amount of noise is not small or we do not
have enough information about the input. In this paper, we introduce a stabilization
method for extracting a numerical Gröbner basis from the given inexact input, by basic
numerical linear algebra, low rank approximations and known numerical Gröbner basis
algorithms.

Key words: Approximate Gröbner Bases, Symbolic-Numeric Computations

1 Introduction

Gröbner basis is one of the most powerful tools in mathematical computations: solving algebraic
equations, simplifying algebraic relations, automatic theorem proving and so on. Recently,
computing a Gröbner basis for polynomials with inexact coefficients has been studied by several
researchers ([17, 18, 10, 19, 20, 23, 25, 27]) since in practice we have to operate with empirical
data. In Sasaki and Kako [17], this problem is classified into the first and second kinds of
problem. The first kind is computing a Gröbner basis for the ideal generated by the given
polynomials with exact coefficients by numerical arithmetic (e.g. floating-point arithmetic).
The second kind is for the given polynomials with inexact coefficients having a priori errors.
In this case, we have to operate with a priori errors whether we compute a basis by exact
arithmetic or not. In this paper, we focus on the second kind of problem.

The research aspects for the second kind are mainly numerical stability and mathematical
meaning, of the results. For the former aspect, several numerical analyses are given by Sasaki
and Kako [18, 17] and an elaboration of the idea of a stabilized Gröbner basis computation
for zero-dimensional cases is studied by Kondratyev and others [10]. For the latter aspect,

∗This work was supported in part by MEXT KAKENHI (22700011).
†3-11 Tsurukabuto, Nada-ku, Kobe 657-8501 JAPAN.

1

Weispfenning introduced a solution by comprehensive Gröbner bases [27, 28, 26]. However,
in general, a comprehensive Gröbner system has a huge number of segments and its compu-
tation time is quite slow (see [14] for example). Though Weispfenning [27] tried to decrease
the time-complexity by using only a single parameter to represent the inexact parts, whose
bounding error mechanism is very similar to interval arithmetic and Traverso and Zanoni [25]
pointed out that an interval easily becomes too large when we compute a Gröbner basis by
interval arithmetic. Moreover, Sasaki pointed out that it is very difficult to represent errors as
parameters or intervals in practical situations, in personal conversations.

In this paper, from the data mining point of view which is different from these known results,
we introduce a new approach for the second kind of problem by combining the following known
methods.

• Reduced row echelon form ([11, 4, 6, 10, 15, 24]) by which we can compute a Gröbner
basis by the well-known linear algebraic ways.

• Structured low rank approximations including Structured total least squares
([13, 12, 9, 3] and citations therein) by which we can compute a rank deficient structured
matrix satisfying some useful properties.

After the introductory subsection below, we review some relevant results of computing a
Gröbner basis by reduced row echelon form in Section 2. Our definition for the second kind
of numerical Gröbner basis and our new method to compute it are given in Sections 3 and 4,
respectively. In Section 5, we give some useful remarks.

1.1 The Problem to be Solved

We show some examples of numerical difficulties to be solved in this paper. For example,
suppose that we compute a Gröbner basis w.r.t. the graded lexicographic order for the ideal
generated by the following polynomials.

Ffp = { 1.01x2−2.09y2+0.002, 4.03x2y+3.06xy, 2.04x2y+0.504x2+1.504xy−1.02y2 }. (1.1)

In this case, by the algorithm (appGröbner, [17]), we get the following Gröbner bases Gaz,15 and
Gaz,2 that are computed with initial precision εInit = 10−16 and εInit = 10−3 and approximate-
zero threshold εZ = 10−15 and εZ = 10−2, respectively. Please note that 1) we use our imple-
mentation1 with Mathematica’s error tracking system instead of effective floating-point numbers
used in the original paper, 2) we show only limited leading figures (rounded) in the all examples
in this paper, and 3) the resulting Gröbner basis would be similar to the following (though it
is depending on the specified tolerance) if we use other algorithms with some approximate zero
test (e.g. the present author [15]).

Gaz,15 = {1.0} ,
Gaz,2 = {1.0x2 − 2.07y2 + 0.00198, 1.0y3 + 0.36xy} .

However, using any approximate zero test may make a difference between the ideal generated
by the resulting Gröbner basis and the given ideal, and we do not have any method to confirm

1We use the Buchberger algorithm with the Gebauer and Möller criteria and the sugar strategy.

2

whether the resulting basis is suitable or not. This may cause a big problem. In fact, we have
to choose a suitable result between Gaz,15 and Gaz,2. Moreover, there are so many possible
combinations of initial precision and approximate-zero threshold though we use only two of
them in this example.

On the other hand, we can use the stabilization techniques for algebraic algorithms ([19, 20,
21]) if we assume that the given polynomial set is exact up to their input precisions. Though
we may be able to get some theoretical results, they just converge to Gst = {1} which is just
a result by ordinary exact arithmetic. Please note again that the stabilization techniques are
introduced for exact inputs and not designed for inexact inputs.

Moreover, we can compute a comprehensive Gröbner system for Ffp after rationalizing it
and adding parameters on all the coefficients as follows.

Fε = { (101
100

+ ε1)x
2 + (−209

100
+ ε2)y

2 + (1
500

+ ε3), (403
100

+ ε4)x
2y + (153

50
+ ε5)xy,

(51
25

+ ε6)x
2y + (63

125
+ ε7)x

2 + (188
125

+ ε8)xy + (−51
50

+ ε9)y
2 }.

In this case, it is very difficult to get reasonable result and we have so many segments in
resulting comprehensive Gröbner system (the number of segments is 263 even for very similar
but easier problem). In addition to this problem, even if we can deal with the large number
of segments, we are not able to determine which segment is preferable for this input since in
general we do not have any information on a priori errors (that may be continuous as well) .

Therefore, roughly speaking, any known method can not extract a meaningful result from
the given inexact input in both mathematical and practical aspects at once. To solve this
problem, from the data mining point of view, we go back to the starting point: “When do we
compute a Gröbner basis with inexact inputs?”. The present author thinks that we compute
it when it seems that there are some algebraic structures on inexact data. That is, we should
find a Gröbner basis with lower entropy (unfortunately enlarged by some errors), which may
be hidden by a priori errors. In this paper, we introduce an algorithm from this point of view.
For example, by our algorithm, we have the following numerical Gröbner basis for Ffp.

G = {1.00000x2 − 2.06419y2 + 1.32909 × 10−14, 1.00000y3 + 0.362958xy − 6.43879 × 10−15y}.

A notable difference between G and Gaz,2 is the constant term of the first basis polynomial,
and our algorithm suggests that 0.00198 in Gaz,2 is generated by a priori errors and should be
zero or tiny.

2 Gröbner basis by RREF

Some researchers studied computing a Gröbner basis by using the reduced row echelon form
(RREF for short, [11, 4]). However, this is not efficient since we have to operate with large
matrices. Using matrix operations partially like F4 and F5 ([6], [7], [10]) may be the best choice
if we want to decrease the computation time. However, it may be useful since we can use so
many results from numerical linear algebra for the situation where we must inevitably operate
with a priori errors.

We assume that we compute a Gröbner basis or its variants for the ideal I ⊆ C[~x] generated
by a polynomial set F = {f1, . . . , fk} ⊂ C[~x] where C[~x] is the polynomial ring in variables

3

~x = x1, . . . , x` over the complex number field C. We note that we use the following definition
though there are several equivalents (see [1] or other text books).

Definition 1 (Gröbner Basis) G = {g1, . . . , grG
} ⊆ I\{0} is a Gröbner basis for I w.r.t.

a fixed term order � if for any f ∈ I \ {0}, there exists gi ∈ G such that ht(gi)|ht(f) where
ht(p) denotes the head term of p(~x) ∈ C[~x] w.r.t. �. /

We consider the linear map φT : C[~x]T → C1×mT such that φT (ti) = −→ei where C[~x]T is
the submodule of C[~x] generated by an ordered set (the left-most element is the highest) of
terms T = {t1, . . . , tmT }� and −→ei (i = 1, . . . ,mT) denotes the canonical basis of C1×mT . The
coefficient vector −→p of p(~x) ∈ C[~x] is defined to be satisfying −→p = φT (p) and p(~x) = φ−1

T (−→p).
With a fixed T , we consider the following subset FT of I.

FT =

{
k∑

i=1

si(~x)fi(~x)

∣∣∣∣∣ si(~x)fi(~x) ∈ C[~x]T , si(~x) ∈ C[~x]

}
.

The Buchberger algorithm guarantees that G ⊆ FT if T has a large enough number of elements
(however, note that T must include some required elements depending on the term order).
To compute a Gröbner basis for I, we construct the matrix MT (F) whose each row vector
−→p = φT (p) is corresponding to each element of p(~x) ∈ PT (f) for each f(~x) ∈ F where

PT (f) = {ti × f(~x) ∈ C[~x]T | ti = φ−1
T (−→ei), i = 1, . . . ,mT }.

By this definition, FT and the linear space VT generated by the row vectors of MT (F) are
isomorphic. We note that a matrix is said to be in the reduced row echelon form if it satisfies
the following four conditions.

1. All nonzero rows appear above zero rows.

2. Each leading element of a row is in a column to the right of the leading element of the
row above it.

3. The leading element in any nonzero row is 1.

4. Every leading element is the only nonzero element in its column.

For the sake of completeness we present the following two lemmas with proofs introduced
in [15] by the present author.

Lemma 1 Let MT (F) be the reduced row echelon form of MT (F). If gi(~x) ∈ FT for a
fixed i ∈ {1, . . . , rG}, MT (F) has a row vector −→p satisfying ht(gi) = ht(φ−1

T (−→p)). /

Proof Since the linear map φT is defined by the ordered set T , each leading element of
a row vector −→p of MT (F) is corresponding to ht(φ−1

T (−→p)). The lemma follows from the facts
that FT and VT are isomorphic and all the leading entries of nonzero rows are disjoint since
MT (F) is in the reduced row echelon form.

4

Lemma 2 Let MT (F) be the reduced row echelon form of MT (F). If T has a large enough
number of elements, the following GT is a Gröbner basis for I.

GT =
{

φ−1
T (−→p)

∣∣∣ −→p is a row vector of MT (F)
}

.

/

Proof The Buchberger algorithm guarantees that G ⊆ FT if T has a large enough number
of elements. Therefore, GT satisfies the condition of Definition 1 since we have gi(~x) ∈ GT ,
i = {1, . . . , rG} by Lemma 1.

Example 1 We compute the reduced Gröbner basis w.r.t. the graded lexicographic order
for the ideal generated by the following polynomials.

Fex = {x2 − 2y2, 4x2y + 3xy, 2x2y +
1

2
x2 +

3

2
xy − y2}. (2.1)

We construct the following matrix MT (Fex) with T = {x4, x3y, x2y2, xy3, y4, x3, x2y, xy2, y3,
x2, xy, y2} (this set is large enough and not the minimum set for Fex) and compute MT (Fex),
the reduced row echelon form of MT (Fex).

MT (Fex) = MT (Fex) =

1 0 −2 0 0 0 0 0 0 0 0 0
0 1 0 −2 0 0 0 0 0 0 0 0
0 0 1 0 −2 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −2 0 0 0 0
0 0 0 0 0 0 1 0 −2 0 0 0
0 0 0 0 0 0 0 0 0 1 0 −2
0 4 0 0 0 0 3 0 0 0 0 0
0 0 4 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 4 0 0 0 3 0
0 2 0 0 0 1

2
3
2
−1 0 0 0 0

0 0 2 0 0 0 1
2

3
2
−1 0 0 0

0 0 0 0 0 0 2 0 0 1
2

3
2
−1

,

1 0 0 0 0 0 0 3
2

0 0 0 0
0 1 0 0 0 0 0 0 0 0 − 9

16
0

0 0 1 0 0 0 0 3
4

0 0 0 0
0 0 0 1 0 0 0 0 0 0 − 9

32
0

0 0 0 0 1 0 0 3
8

0 0 0 0
0 0 0 0 0 1 0 −2 0 0 0 0
0 0 0 0 0 0 1 0 0 0 3

4
0

0 0 0 0 0 0 0 0 1 0 3
8

0
0 0 0 0 0 0 0 0 0 1 0 −2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

.

We have GT = {x4 + 3
2
xy2, x3y− 9

16
xy, x2y2 + 3

4
xy2, xy3− 9

32
xy, y4 + 3

8
xy2, x3−2xy2, x2y+ 3

4
xy,

y3 + 3
8
xy, x2 − 2y2} hence we obtain the following reduced Gröbner basis if we delete all the

redundant elements.

G =
{
x2 − 2y2, y3 + 3

8
xy

}
.

We note that in general we must check whether G is actually a Gröbner basis for I, or not,
since Lemma 2 is valid only when T has a large enough number of elements. /

5

2.1 Relation between Rank and Priori Errors

It seems that Ffp in (1.1) at the beginning of Section 1.1 is one of perturbed sets of Fex in (2.1)
at Example 1 by some errors. We note that we can not say this is correct in practice. In general,
no one knows the actual polynomial set (with no errors) of Ffp. This means that Fex is just one
of (infinitely many) possible cases of Ffp. The aim of this paper is adding mathematical and
practical meanings to the situation that we compute a Gröbner basis for Ffp with this property.

To make the situation much simpler, we consider the following polynomial set F̃fp.

F̃fp = {x2 − 2y2, 4x2y + 3xy, 2x2y +
1

2
x2 + 1.500001xy − y2}. (2.2)

The difference between polynomial sets Fex and F̃fp is just 0.000001xy, and we have the fol-
lowing MT (F̃fp) which is very similar to MT (Fex). However, ranks of MT (Fex) and MT (F̃fp)
are not the same: rank(MT (Fex)) = 9 and rank(MT (F̃fp)) = 11.

MT (F̃fp) =

1 0 −2 0 0 0 0 0 0 0 0 0
0 1 0 −2 0 0 0 0 0 0 0 0
0 0 1 0 −2 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −2 0 0 0 0
0 0 0 0 0 0 1 0 −2 0 0 0
0 0 0 0 0 0 0 0 0 1 0 −2
0 4 0 0 0 0 3 0 0 0 0 0
0 0 4 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 4 0 0 0 3 0
0 2 0 0 0 1

2
1.500001 −1 0 0 0 0

0 0 2 0 0 0 1
2

1.500001 −1 0 0 0
0 0 0 0 0 0 2 0 0 1

2
1.500001 −1

.

Moreover, the singular values of MT (F̃fp) are followings: {6.90335, 6.06098, 4.16844, 2.52968,
2.44446, 2.24685, 1.9732, 1.86836, 0.96183, 7.04525 × 10−7, 2.89525 × 10−7}.

By Lemma 2 and the rank of MT (F̃fp), if T also has a large enough number of elements
for F̃fp, a Gröbner basis for the ideal generated by F̃fp has two extra polynomials against a
Gröbner basis GT for Fex. These two polynomials must be generated by the tiny difference
between the matrices and can be thought to be aftereffects of noise. This means that the
difference (0.000001xy) hides the well structured result GT and G for Fex. Therefore, if we’d
like to unveil the well structured result from the given inexact input, finding the rank deficient
matrix MT (Fex) from MT (F̃fp) is the problem to be solved.

Moreover, it easily happens that the rank of a matrix will increase by some perturbations
(errors) though it also happens but rarely that the rank of a matrix may decrease, since a rank
increase or decrease corresponds to an increase or decrease in entropy, respectively. Hence,
the difference of ranks can be thought to be aftereffects of a priori errors. This situation is
very similar to several algorithms for approximate polynomial GCD, factorization and so on
[9, 3, 29, 8]. Therefore, computing a Gröbner basis with inexact inputs also may be done by
computing a rank deficient (structured) matrix and some known algorithms using floating point
arithmetic, based on the conventional Buchberger algorithm.

6

Remark 1 One may think that there is a big difference between exact and numerical ranks:
a small element in absolute value may be ignored even if its relative error is much smaller than
others. Hence a resulting Gröbner basis can be far from the original. This possibly happens
but inevitable for the second kind of problem since any relativeness of errors is easily lost even
if we just do only a single addition of polynomials (see the discussion in [15]). Again, please
note that the aim of this paper is finding a meaningful result hidden by a priori errors from
the given inexact input, and in general it is difficult as shown in Section 1.1 that we get some
practical results by known methods (e.g. CGS). /

3 Structured Gröbner basis

For approximate GCD and factorization, we usually assume that inexact input polynomials
(with a priori errors) and unknown exact polynomials (with no error) have the same degree at
most. This means that input and hidden desired polynomials are supposed to have the same
structure. In order to state this kind of constraint in its full generality, we define a structured
polynomial set. Consider a mapping Si (i = 1, . . . , k) from a parameter space Cni to a set of
polynomials C[~x]. A polynomial set F = {f1, . . . , fk} is called S-structured if each element
fi(~x) of the set is in the image of Si, i.e., if there exists a parameter ~pi ∈ Cni , such that
fi(~x) = Si(~pi).

In this paper, we try to compute a numerical Gröbner basis by finding a rank deficient
matrix as noted in the previous section. From this point of view, we introduce the following
structured Gröbner basis (SGB for short).

Definition 2 (Structured Gröbner basis) We say G is a S-structured Gröbner basis
for F with tolerance ε ∈ R≥0, rank deficiency d ∈ Z≥0 and set of terms T if they satisfy the
following conditions:

1. G is a Gröbner basis for the ideal generated by the following Fst = {fst,1, . . . , fst,k} ∈ C[~x].

2. F and Fst are S-structured polynomial sets, i.e., there exists parameters ~pi, ~psti ∈ Cni,
such that fi(~x) = Si(~pi) and fst,i(~x) = Si(~psti).

3. ‖(~p1 . . . ~pk) − (~pst1 . . . ~pstk)‖= ε where ‖·‖ denotes a suitable vector norm.

4. rank(MT (Fst)) = rank(MT (F)) − d.
/

By this definition, the aim of this paper becomes to find a method to compute a S-structured
Gröbner basis for the given polynomial set F with the tolerance ε, the rank deficiency d, the
set of terms T and S-structured polynomial set Fst.

Example 2 We show a S-structured Gröbner basis for the following F̃fp introduced in
(2.2) at Section 2.1.

F̃fp = {x2 − 2y2, 4x2y + 3xy, 2x2y +
1

2
x2 + 1.500001xy − y2}.

7

We take the following structure specification S for example.

S1 : (p1 p2) 7→ p1x
2 + p2y

2,
S2 : (p3 p4) 7→ p3x

2y + p4xy,
S3 : (p5 p6 p7 p8) 7→ p5x

2y + p6x
2 + p7xy + p8y

2.

In this setting, the following G is a S-structured Gröbner basis for F̃fp w.r.t. the graded
lexicographic order with tolerance ε = 0.000001 in 2-norm, rank deficiency d = 2 and set of
terms T = {x4, x3y, x2y2, xy3, y4, x3, x2y, xy2, y3, x2, xy, y2}.

G =
{
x2 − 2y2, y3 + 3

8
xy

}
.

Moreover, for this idealized case, we have

Fst = {x2 − 2y2, 4x2y + 3xy, 2x2y +
1

2
x2 +

3

2
xy − y2}.

Note that S-structured Gröbner basis is not unique even for the fixed S, ε, d and T . The
above G is just one of them. /

4 Algorithm for computing SGB

In this section, we introduce an algorithm for computing S-structured numerical Gröbner
basis. The algorithm is not for exact S-structured Gröbner basis but for numerical ones since
in general it is difficult to compute a nearby exact rank deficient structured matrix. We give
some remarks about this difficulty in Section 5.

To find a S-structured polynomial set Fst we compute a rank deficient structured matrix.
This can be done by several known methods for the following problem (SLRA: Structured Low
Rank Approximation).

Definition 3 (SLRA) Given a structure specification S : Rnα → Rm×n , a parameter
vector ~p ∈ Rnα, a vector norm ‖·‖, and an integer r, 0 < r < min{m,n}, find a vector ~p∗ such
that

min
~p∗

‖~p − ~p∗‖ and rank(S(~p∗)) ≤ r.

/

The SLRA problem can be solved by the lift-and-project method or solvers for the STLS
problem (Structured Total Least Squares) under some convergent conditions (see Chapter 5
in [2]) and easily extended to complex numbers (see Chapter 2 in [12]). We note that the
difference between the SLRA and STLS problems is the objective rank deficiency. The STLS
problem is a special case of the SLRA problem with r = min{m,n}− 1, however in some cases
we can convert the SLRA problem to the STLS problem though this conversion (see [16, 2]) is
not easy task for our problem according to our experiments.

By the above discussions, we have the following algorithm for computing a S-structured
numerical Gröbner basis.

8

Algorithm 1 (S-structured numerical Gröbner basis)

Input: F = {f1(~x), . . . , fk(~x)} ⊂ C[~x], a term order � and a structure specification S.

Output: a S-structured Gröbner basis G for F with the tolerance ε, the rank deficiency d, the set
of terms T and S-structured polynomial set Fst, or failed.

1. Compute a numerical Gröbner basis G̃ for the ideal generated by F , by some known
algorithms and determine a suitable set of terms T based on the result.

2. Construct MT (F) ∈ Cm×n, compute its non-zero singular values σi (i = 1, . . . , rorg) and
determine a suitable rank deficiency d (Take the largest d such that σrorg−d+1/σrorg−d <
10−2 for example). If there is no such d found, output failed.

3. By a solver for the SLRA problem, find a S-structured polynomial set Fst with the rank
deficiency d satisfying rank(MT (Fst)) = rank(MT (F))− d and compute the tolerance ε.
If there is no such Fst found, output failed.

4. Compute a numerical Gröbner basis G for the ideal generated by Fst, by some known
algorithms and output {G, ε, d, T , Fst}.

/

The above algorithm is very simple however it works as shown in the following examples and
for Ffp in (1.1) at the beginning of Section 1.1.

Example 3 Suppose that we compute a S-structured numerical Gröbner basis w.r.t. the
lexicographic order for the following polynomial set F .

F = {x3 + x2y2, x2y2 − y3, −x2y + 1.000001x2 + xy2 + 0.999999y2}.

This is the following polynomial set Fδ with δ = 10−6, which is introduced by Sasaki and Kako
(Example 5,[17]).

Fδ = {x3 + x2y2, x2y2 − y3, −x2y + (1 + δ)x2 + xy2 + (1 − δ)y2}.

In this case, by the algorithm (appGröbner, [17]) with initial precision2 εInit = 10−16 and
approximate-zero threshold εZ = 10−15, we get the following Gröbner basis and the set of
terms T .

Gaz = {1.0x2 − 2.000001y3 + 0.999998y2, 1.0xy2 + 1.000001y3, 1.0y4 − 1.000001y3},

T = {x4y4, x4y3, x4y2, x4y, x3y5, x3y4, x3y3, x3y2, x3y, x3, x2y5, x2y4, x2y3,
x2y2, x2y, x2, xy6, xy5, xy4, xy3, xy2, y6, y5, y4, y3, y2}.

We construct MT (F) ∈ C30×26 and determine the rank deficiency d = 4 since we get the
following singular values and σ26−4+1/σ26−4 = 1.47591 × 10−6.

{2.12971, 1.84588, . . . (18 elements snipped) . . . ,
0.282599, 0.238185, 3.51538 × 10−7, 3.04624 × 10−7, 1.66608 × 10−16, 1.66608 × 10−16}.

2In this paper, we assume that we do not have any information on a priori errors hence we suppose that all
the input coefficients uniformly have the machine-precision.

9

We take the following structure specification S.

S1 : (p1 p2) 7→ p1x
3 + p2x

2y2,
S2 : (p3 p4) 7→ p3x

2y2 + p4y
3,

S3 : (p5 p6 p7 p8) 7→ p5x
2y + p6x

2 + p7xy2 + p8y
2.

By the lift-and-project method (a solver for the SLRA problem), we get the following S-
structured polynomial set Fst with tolerance ε = 7.2326×10−7 in 2-norm, such that rank(MT (Fst))
= rank(MT (F)) − d.

Fst = {1.00000023x3 + 0.9999998x2y2, 1.00000018x2y2 − 0.9999998y3,
− 0.99999968x2y + 1.00000073x2 + 1.00000027xy2 + 0.99999932y2}.

Finally, by the algorithm (appGröbner, [17]), we get the following S-structured numerical
Gröbner basis for F .

G = {1.0x2 − 0.99999802y5 − 0.99999908y4 + 0.99999859y2,
1.0xy2 + 0.99999954y4, 1.0y6 − 1.0000006y3}.

We note that this result is compatible to the following comprehensive Gröbner system for F if
we think that δ represents a priori errors.

{x2 − y5 − y4 + y2, xy2 + y4, y6 − y3} (δ = 0),
{2x2 + xy2 − y3, xy3 + y3, y4 − y3} (δ = 1),
{x3 + y3, x2y + y3 − 2y2, xy2 + y3, y4 − y3} (δ = −1),
{(1 + δ)2x2 + 2xy2 − 2δy3 + (1 − δ2)y2, −(1 − δ)(xy2 + y3), y4 − y3} (δ3 6= δ).

/

Example 4 Suppose that we compute a S-structured numerical Gröbner basis w.r.t. the
graded lexicographic order for the following polynomial set F .

F = {1.99974x2yz + 0.999742x2, 3.00263xyz2 − 2.00013yz,
2.99826x2z − 2.00053x − 2.00006yz − 0.99943}.

This is generated by adding small random perturbations to the following polynomial set Fex

introduced by Sasaki and Kako (Example 6,[17]).

Fex = {2x2yz + x2, 3xyz2 − 2yz, 3x2z − 2x − 2yz − 1}.

In this case, by the algorithm (appGröbner, [17]) with initial precision εInit = 10−16 and
approximate-zero threshold εZ = 10−15, we get the following Gröbner basis and the set of
terms T .

Gaz = {1.0x − 0.142550, 1.0y + 0.106986, 1.0z − 4.67292},

T = {x5yz3, x4y2z3, x4yz4, x3y2z4, x2y2z5, x5yz2, x4y2z2,
. . . (42 elements snipped) . . . ,

x2z, xyz, xz2, y2z, yz2, x2, xy, xz, yz, z2, x, y, z, 1}.

10

We construct MT (F) ∈ C75×63 and determine the rank deficiency d = 7 since we get the
following singular values and σ63−7+1/σ63−7 = 0.00724885.

{2.14386, 2.08212, . . . (52 elements snipped) . . . , 0.04441, 0.0384606, 0.000278795,
0.000234535, 0.000181527, 0.000128085, 0.0000768688, 1.78766 × 10−16, 1.78766 × 10−16}.

We take the following structure specification S.

S1 : (p1 p2) 7→ p1x
2yz + p2x

2,
S2 : (p3 p4) 7→ p3xyz2 + p4yz,
S3 : (p5 p6 p7 p8) 7→ p5x

2z + p6x + p7yz + p8.

We get the following S-structured polynomial set Fst with tolerance ε = 0.00200393 in 2-norm,
such that rank(MT (Fst)) = rank(MT (F))−d, by the lift-and-project method (a solver for the
SLRA problem).

Fst = {1.99978x2yz + 0.99966x2, 3.00199xyz2 − 2.00109yz,
2.99915x2z − 1.9992x − 1.99991yz − 0.999725}.

Finally, by the algorithm (appGröbner, [17]), we get the following S-structured numerical
Gröbner basis for F .

G = {1.0yz + 0.499885, 1.0x + 1.33349y}.

We note that the result is very similar to the following exact S-structured Gröbner basis which
is the reduced Gröbner basis for the original polynomial set without perturbations though as
noted in former sections we can not say that this is the unique correct answer. However, the
result shows that we extracted a meaningful numerical Gröbner basis from the given inexact
input.

Gex = {yz +
1

2
, x +

4

3
y}.

/

As shown in the above examples, Algorithm 1 can compute a S-structured numerical
Gröbner basis. However, we note that the algorithm works only as a preconditioning method
and does not improve the numerical stability. It is the different problem. For example, the
algorithm outputs failed and does not give us any new useful information on the following
polynomial set used by Kondratyev and others [10].{

h1 = 1.027748y2 − 0.467871xy + 2.972252x2 + 0.662026y + 0.0785252x − 3.888889,
h2 = 3.958378y2 + 0.701807xy + 1.041622x2 − 0.0785252y + 0.662026x − 3.888889.

The reason is very simple. This polynomial set does not have any other S-structured polynomial
set with any small tolerance ε and rank deficiency d > 0 if we take T = {y6, xy5, y5, x2y4, xy4,
y4, x3y3, x2y3, xy3, y3, x4y2, x3y2, x2y2, xy2, y2, x5y, x4y, x3y, x2y, xy, y, x6, x5, x4, x3, x2, x,
1} for example. In fact, h1 and h2 are introduced by Stetter [22], by decimal approximations
hence they do not have a priori errors from the data mining point of view in this paper.

11

5 Remarks

In general the SLRA problem is NP-hard except for a few special cases (see [13] for details). Our
algorithm fully depends on the SLRA problem hence Algorithm 1 is not efficient in computation
time. However, the lift-and-project method can find a local optimum in terms of the difference
ε between F and Fst if each iteration constructs a distinct projection (see [5] for details). Our
algorithm is to find a rank deficient matrix from the matrix having a large gap among its
singular values hence this helps the lift-and-project method to start with a matrix near its local
optimum.

One may be interested in the effectiveness of Algorithm 1 and think that the lift-and-project
method converges only for toy examples. To see this, we generated 3 cases (A,B and C) of 100
polynomial sets in two variables and apply the algorithm with the graded lexicographic order.
Each polynomial set is randomly generated as follows: 1) generate a Gröbner basis with 3
basis polynomials of total degree tb at most having 2,3 or 4 terms with integer coefficients
∈ [−10, 10], 2) generate a polynomial set with 4 syzygies of total degree ts at most having 2,3
or 4 terms with integer coefficients ∈ [−10, 10], and 3) perturb the all coefficients by relative
noises ∈ [−10−5, 10−5].

In Table 1, ’#~p’ denotes the average of the number of parameters of structure specifications
used in the algorithm, ’w/o’ denotes the number of good results by our appGröbner implemen-
tation, ’with’ denotes the number of good results by Algorithm 1, ’ε’ denotes the average of
tolerances of good results in 2-norm, and ’diff’ denotes the average of differences between the
resulting Gröbner basis by Algorithm 1 and the Gröbner basis for the exact polynomial set in
2-norm, where “good result” means that its resulting ’diff’ is enough small.

It shows that our algorithm can extract a meaningful basis for the inexact input which the
known algorithm can not work for. Note that our appGröbner implementation can work more if
we have enough information on a priori errors (e.g. suitable initial precision and approximate-
zero threshold). Moreover, for most of the failure polynomial sets, Algorithm 1 can compute
meaningful results if we specify suitable rank deficiencies though this is difficult since in such
cases the gaps among singular values are not large.

case ts tb #~p w/o with ε diff
A 1 2 33.9 0 96 0.000434 0.000043
B 1 3 40.7 3 45 0.000458 0.000034
C 2 2 42.9 15 89 0.000345 0.000040

Table 1: Experimental Results

For polynomials in more than two variables or polynomials of higher degrees, it becomes
difficult to determine a suitable set of terms T since most of generated syzygies during computa-
tions in Step 1 becomes unreliable. This forces us to use much larger T hence the lift-and-project
method has to operate with a huge matrix and its convergence speed becomes very slow. A
simple workaround is replacing Step 4 with the following.

4. Compute a numerical Gröbner basis G for the ideal generated by Fst, by some known
algorithms. Output {G, ε, d, T , Fst} if the suitable set of terms T is unchanged,
otherwise go to Step 2 with a new suitable set of terms T .

12

However, this step tends to cause an infinite loop and not so efficient according to our experi-
ments hence this does not resolve the problem.

Therefore, the followings are open questions for further work.

• Finding a method to determine a suitable set of terms T in terms of S-structured Gröbner
basis for the input.

• Finding a better method for our SLRA problem.

• Finding a method to compute an optimal S-structured numerical Gröbner basis w.r.t.
the tolerance ε.

Acknowledgements

The author wishes to thank Prof. Nabeshima and Mr. Kurata for their contributions in
computing the large comprehensive Gröbner system (e.g. 263 segments). The information is
very helpful to note the introductory section.

References

[1] T. Becker and V. Weispfenning. Gröbner bases, volume 141 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1993. A computational approach to commutative
algebra, In cooperation with Heinz Kredel.

[2] P. Boito. Structured Matrix Based Methods for Approximate GCD. Ph.D. Thesis. Depart-
ment of Mathematics, University of Pisa, Italia, 2007.

[3] B. Botting. Structured total least squares for approximate polynomial operations. Master’s
Thesis. School of Computer Science, University of Waterloo, 2004.

[4] M. Byröd, K. Josephson, and K. Åström. Fast optimal three view triangulation. In Y. Yagi,
I. S. Kweon, S. B. Kang, and H. Zha, editors, Asian Conference on Computer Vision, 2007.

[5] M. T. Chu, R. E. Funderlic, and R. J. Plemmons. Structured low rank approximation.
Linear Algebra Appl., 366:157–172, 2003. Special issue on structured matrices: analysis,
algorithms and applications (Cortona, 2000).

[6] J.-C. Faugére. A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl.
Algebra, 139(1-3):61–88, 1999.

[7] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to
zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic
Computation, pages 75–83 (electronic), New York, 2002. ACM.

[8] S. Gao, E. Kaltofen, J. May, Z. Yang, and L. Zhi. Approximate factorization of multivariate
polynomials via differential equations. In ISSAC 2004, pages 167–174. ACM, New York,
2004.

13

[9] E. Kaltofen, Z. Yang, and L. Zhi. Approximate greatest common divisors of several poly-
nomials with linearly constrained coefficients and singular polynomials. In ISSAC ’06:
Proceedings of the 2006 international symposium on Symbolic and algebraic computation,
pages 169–176, New York, NY, USA, 2006. ACM Press.

[10] A. Kondratyev, H. J. Stetter, and S. Winkler. Numerical computation of gröbner bases.
In Proceedings of CASC2004 (Computer Algebra in Scientific Computing), pages 295–306,
2004.

[11] D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of algebraic
equations. In Computer algebra (London, 1983), volume 162 of Lecture Notes in Comput.
Sci., pages 146–156. Springer, Berlin, 1983.

[12] P. Lemmerling. Structured total least squares: analysis, algorithms and applications. Ph.D.
Thesis. Faculty of Applied Sciences, K.U. Leuven, Belgium, 1999.

[13] I. Markovsky. Structured low-rank approximation and its applications. Automatica J.
IFAC, 44(4):891–909, 2008.

[14] K. Nabeshima. A speed-up of the algorithm for computing comprehensive gröbner sys-
tems. In ISSAC 2007: Proceedings of the 2007 international symposium on Symbolic and
algebraic computation, pages 299–306, New York, NY, USA, 2007. ACM.

[15] K. Nagasaka. A study on gröbner basis with inexact input. In Proceedings of CASC 2009,
volume 5743 of Lecture Notes in Comput. Sci., pages 247–258. Springer, Berlin, 2009.

[16] H. Park, L. Zhang, and J. B. Rosen. Low rank approximation of a Hankel matrix by
structured total least norm. BIT, 39(4):757–779, 1999.

[17] T. Sasaki and F. Kako. Computing floating-point gröbner bases stably. In Proceedings of
SNC 2007, pages 180–189. ACM, New York, 2007.

[18] T. Sasaki and F. Kako. Floating-point gröbner basis computation with ill-conditionedness
estimation. In Proceedings of ASCM 2007, volume 5081 of Lecture Notes in Comput. Sci.,
pages 278–292. Springer, Berlin, 2008.

[19] K. Shirayanagi. An algorithm to compute floating point gröbner bases. In Proceedings of
the Maple summer workshop and symposium on Mathematical computation with Maple V
: ideas and applications, pages 95–106, Cambridge, MA, USA, 1993. Birkhauser Boston
Inc.

[20] K. Shirayanagi. Floating point gröbner bases. In Selected papers presented at the in-
ternational IMACS symposium on Symbolic computation, new trends and developments,
pages 509–528, Amsterdam, The Netherlands, The Netherlands, 1996. Elsevier Science
Publishers B. V.

[21] K. Shirayanagi and M. Sweedler. A theory of stabilizing algebraic algorithms. Technical
Report 95-28, pages 1–92, 1995. http://www.ss.u-tokai.ac.jp/s̃hirayan/msitr95-28.pdf.

14

[22] H. J. Stetter. Stabilization of polynomial systems solving with Groebner bases. In Proceed-
ings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei,
HI), pages 117–124 (electronic), New York, 1997. ACM.

[23] H. J. Stetter. Approximate gröbner bases – an impossible concept? In Proceedings of SNC
2005 (Symbolic-Numeric Computation), pages 235–236, 2005.

[24] A. Suzuki. Computing gröbner bases within linear algebra. In Proceedings of CASC 2009,
volume 5743 of Lecture Notes in Comput. Sci., pages 310–321. Springer, Berlin, 2009.

[25] C. Traverso and A. Zanoni. Numerical stability and stabilization of groebner basis com-
putation. In ISSAC 2002: Proceedings of the 2002 international symposium on Symbolic
and algebraic computation, pages 262–269, New York, NY, USA, 2002. ACM.

[26] V. Weispfenning. Comprehensive Gröbner bases. J. Symbolic Comput., 14(1):1–29, 1992.

[27] V. Weispfenning. Gröbner bases for inexact input data. In Proceedings of CASC 2003
(Computer Algebra in Scientific Computing), pages 403–411, 2002.

[28] V. Weispfenning. Canonical comprehensive Gröbner bases. J. Symbolic Comput., 36(3-
4):669–683, 2003. International Symposium on Symbolic and Algebraic Computation (IS-
SAC 2002) (Lille).

[29] L. Zhi. Displacement structure in computing approximate GCD of univariate polynomials.
In Computer mathematics, volume 10 of Lecture Notes Ser. Comput., pages 288–298. World
Sci. Publ., River Edge, NJ, 2003.

The preliminary implementation of Algorithm 1 on Mathematica 7.0, used in this paper can
be found at “ http://wwwmain.h.kobe-u.ac.jp/~nagasaka/research/snap/sgb.nb ”.

15

