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ABSTRACT
In the combinatorics and probability theory, there are two
concepts, differentiably finite and polynomially recursive and
they are related each other. Using those well known facts,
we give an algorithm to construct recursive formulas and cal-
culate the power-series roots of bivariate polynomials. The
computational cost of the algorithm is linear w.r.t. the given
cutoff degree. We also show some linear dependent relations
on the coefficients of the power-series roots. By this prop-
erty, we prove completeness of a bivariate polynomial factor-
ization algorithm using zero-sum relations which is a base
algorithm of a recent approximate factorization method.

1. INTRODUCTION
Stanley wrote a book about enumerative combinatorics [7],
in which there are the following concepts: differentiably fi-
nite and polynomially recursive. We note that we use their
abbreviations, D-finite and P-recursive, respectively, and
our discussion is over C[u] and C[[u]] which are a polyno-
mial ring in u over C and a formal power-series ring in u
over C, the complex field, respectively.

Definition 1 (D-finite [7]). For any ϕ(u) ∈ C[[u]],
we say ϕ(u) is D-finite power-series if there exist polynomi-
als p0(u), . . .,pd(u) ∈ C[u] satisfying

d
X

i=0

pi(u)ϕ(u)(i) = 0, (1.1)

where pd(u) 6= 0 and ϕ(u)(i) denotes i-th partial differential
∂iϕ(u)/∂ui ∈ C[[u]], of ϕ(u) w.r.t. u.

Definition 2 (P-recursive [7]). A function c : N →
C is called P-recursive if for all k ∈ N, there exist polyno-
mials P0, . . ., Pb ∈ C[k] satisfying

Pb(k)c(k + b) + Pb−1(k)c(k + b − 1)
+ · · · + P0(k)c(k) = 0,

(1.2)

where Pb 6= 0.

The important fact is that algebraic functions are D-finite
and we can see several examples of D-finite power-series and
P-recursive functions in the book [7]. Benali and Jean-Paul
[1] studied some algebraic properties of D-finite sequences
satisfying additional conditions. Moreover, Lipshitz [2] stud-
ied the generalized multivariate D-finite power-series and P-
recursive functions. However, we note that there are only
few papers in the algebra while there are several papers
about D-finite power-series in the combinatorics and prob-
ability theory. We try to use those concepts for symbolic
algebraic computations in this paper.

P-recursive functions are similar to linear recurrence func-
tions. We can compute power-series by using P-recursiveness
as we can use some linear recurrence relations to compute
linear quantities. Our aim is to show such an algorithm.
Generally, computing the power-series roots of polynomials
is done by the symbolic Newton’s method, the generalized
Hensel construction or their variants. Those methods have a
characteristic that computational costs are non-linear w.r.t.
the given cutoff degree bound. On the other hand, a com-
putational cost is linear w.r.t. the given cutoff degree bound
if we use P-recursiveness of D-finite power-series to compute
the power-series roots.

In this paper, we give degree bounds of polynomials p0(u),
. . ., pd(u) in the relation (1.1), and by which we give an algo-
rithm to compute the power-series roots of bivariate polyno-
mials. These discussions also give us an additional property:
linear dependent relations on coefficients of the power-series
roots of bivariate polynomials. Using these properties, we
also give a proof of completeness of a bivariate factorization
algorithm [5, 4] which are the exact version of approximate
factorization [3] and has not been proved for any polynomial
cutoff degree bounds.

This paper is formed as follows. We review some basic prop-
erties of D-finite power-series and P-recursive sequences in
the section 2. We prepare some degree bounds in the sec-
tion 3 to show an expansion algorithm in the section 4. In
the section 5, as an application of former sections, we give
a proof of completeness of the bivariate factorization algo-
rithm [5, 4]. Finally, we give a conclusion in the section
6.



In this paper, we denote the quotient field of C[u] by C(u).
F (u, x) ∈ C[u, x] is the given polynomial in u and the main
variable x and put

F (u, x) = fnxn + fn−1x
n−1 + · · · + f1x + f0.

And we suppose that F (u, x) is square-free w.r.t. x and put
n = degx(F ) and e = degu(F ).

2. D­FINITE AND P­RECURSIVE
In this section, we review some useful properties of D-finite
power-series and D-recursive functions, briefly. We recom-
mend to read the Stanley’s book [7] if you are interested in
the details, especially for their proofs.

Proposition 1 (Proposition 6.4.3 in [7]). Let ϕ(u)
be a power-series in u and put ϕ(u) =

P

k≥0 c(k)uk ∈ C[[u]].

Then, ϕ(u) is D-finite if and only if c(k) is P-recursive.

Theorem 1 (Theorem 6.4.6 in [7]). For any power-
series roots ϕ(u) ∈ C[[u]] of F (u, x) w.r.t. x, ϕ(u) is D-finite
and ϕ(u) satisfies the relation (1.1) with d = n.

The proposition 1 and the theorem 1 mean that we can
compute the coefficients of the power-series roots of F (u, x)
if we construct a corresponding P-recursive function c(k).
The proofs of the above can be found in the book [7] (The
latter proof is done by treating C[u, x]/(F (u, x)) as a vector
space whose dimension is equal to or less than n).

3. DEGREE BOUNDS
We only consider the power-series roots of the given poly-
nomial F (u, x) as D-finite power-series. At first, we show
degree bounds of polynomials p0(u), . . ., pd(u) satisfying the
relation (1.1) for the power-series roots of F (u, x). Since, in
the book [7], the theorem 1 is proved by using the total dif-

ferential of F (u, ϕ(u)) and representing ϕ(1) as an element

in C(u, ϕ), so we treat ϕ(1) as an element in C(u, ϕ), differ-
entiate it recursively and give degree bounds of polynomials
p0(u), . . ., pd(u).

The total differential of F (u, ϕ(u)) is given as follows.

0 =
d

du
F (u, ϕ) =

∂F (u, x)

∂u

˛

˛

˛

˛

x=ϕ

+ ϕ(1) ∂F (u, x)

∂x

˛

˛

˛

˛

x=ϕ

,

(3.1)
where expr(x)|x=ϕ denotes substituting ϕ for x. Since the
given polynomial F (u, x) is square-free w.r.t. x, we have
∂F (u, x)/∂x|x=ϕ 6= 0. Hence, the following relation follows
from the relation (3.1).

ϕ(1) = −

∂F (u,x)
∂u

˛

˛

˛

x=ϕ

∂F (u,x)
∂x

˛

˛

˛

x=ϕ

∈ C(u, ϕ). (3.2)

This means that ϕ(1) is differentiable hence we have ϕ(i) (i =
0, 1, . . . , n) ∈ C(u, ϕ). In the rest of this paper, we use the
following notations for these partial differentials for simplic-
ity.

N1(u, ϕ) = − ∂F (u, x)

∂u

˛

˛

˛

˛

x=ϕ

, D(u, ϕ) =
∂F (u, x)

∂x

˛

˛

˛

˛

x=ϕ

.

(3.3)

Lemma 1. ϕ(i)(u) (i = 1, . . . , n) can be represented as

ϕ(i) = Ni(u, ϕ)/D(u, ϕ)2i−1, (3.4)

where D(u, ϕ), Ni(u, ϕ) (i = 1, . . . , n) ∈ C[u, ϕ] and these
polynomials satisfy the following degree bounds.

degϕ(Ni) ≤ (2i − 1)n − 2(i − 1), degϕ(D) ≤ n − 1,
degu(Ni) ≤ (2i − 1)e − i, degu(D) ≤ e.

Proof. The degree bounds of D follow from the defini-
tion (3.3) hence it is valid. Therefore, we prove the relation
(3.4) and the degree bounds of Ni by the mathematical in-
duction.

For i = 1, the lemma is valid by the definition and the as-
sumption. Suppose that the lemma is valid for i = 1, . . . , κ.
For i = κ + 1, by differentiating ϕ(κ), we have

ϕ(κ+1) =
N

(1)
κ D − (2κ − 1)NκD(1)

D2κ
. (3.5)

Here, N
(1)
κ and D(1) are polynomials in u, ϕ and ϕ(1). By

substituting the relations (3.2) and (3.3) for ϕ(1) in N
(1)
κ and

D(1), we have N
(1)
κ , D(1) ∈ C(u, ϕ).

Since any denominators of rational expressions in N
(1)
κ and

D(1) is D or a factor of D, we can reduce denominators of
the numerator of the expression (3.5) to the common de-
nominator D and let the numerator of the numerator be
Nκ+1 which is formed as

Nκ+1 = (D ∂Nκ(u,x)
∂u

|x=ϕ + N1
∂Nκ(u,x)

∂x
|x=ϕ)D

− (2κ − 1)Nκ(D ∂D(u,x)
∂u

|x=ϕ + N1
∂D(u,x)

∂x
|x=ϕ).

Hence, the expression (3.5) can be written as

ϕ(κ+1) =
Nκ+1

D2κ+1
=

Nκ+1

D2(κ+1)−1
, Nκ+1 ∈ C[u, ϕ].

Degree bounds of Nκ+1 are bounded as follows.

degϕ(Nκ+1) ≤ max{degϕ(N
(1)
κ ) + degϕ(D),

degϕ(Nκ) + degϕ(D(1))}
= max{degϕ(Nκ) + 2degϕ(D),

2degϕ(D) + degϕ(Nκ)}
= degϕ(Nκ) + 2degϕ(D)
≤ (2κ − 1)n − 2(κ − 1) + 2(n − 1)
= (2(κ + 1) − 1)n − 2((κ + 1) − 1),

degu(Nκ+1) ≤ max{degu(N
(1)
κ ) + degu(D),

degu(Nκ) + degu(D(1))}
= max{degu(Nκ) + 2degu(D) − 1,

2degu(D) − 1 + degu(Nκ)}
= degu(Nκ) + 2degu(D) − 1
≤ (2κ − 1)e − κ + 2e − 1
= (2(κ + 1) − 1)e − (κ + 1).

Therefore, the lemma is proved by the mathematical induc-
tion.

The polynomials p0(u), . . ., pn(u) that are considered in this
section satisfy the following equation by the definition 1 and
the theorem 1.

pn(u)ϕ(u)(n) + pn−1(u)ϕ(u)(n−1) + · · ·
+ p1(u)ϕ(u)(1) + p0(u)ϕ(u) = 0.

(3.6)



By multiplicating the least common denominator of ϕ(u)(i)

(i = 0, . . . , n), we can rewrite the equation (3.6) as the fol-
lowing linear equation w.r.t. unknown coefficients of poly-
nomials p0(u), . . ., pn(u).

pn(u)φn(u, ϕ) + pn−1(u)φn−1(u, ϕ) + · · ·
+ p1(u)φ1(u, ϕ) + p0(u)φ0(u, ϕ) = 0,

(3.7)

where φi(u, ϕ) (i = 0, . . . , n) ∈ C[u, ϕ].

Lemma 2. φ0, . . . , φn satisfy the following degree bounds.

degϕ(φi) ≤ 2n2 − 3n + 2,
degu(φi) ≤ (2n − 1)e − i.

Proof. Since, by the lemma 1, each least common de-
nominators of ϕ(u)(i) is D(u, ϕ)2n−1 or its factor, we can
rewrite φi as follows.

φi =



D(u, ϕ)2n−1ϕ (i = 0),

D(u, ϕ)2(n−i)Ni(u, ϕ) (i = 1, . . . , n).

Therefore, the lemma is proved by the lemma 1.

We note that we have to discuss all the quantities over
C[u, ϕ]/(F (u, ϕ)) to treat the power-series roots of F (u, ϕ)
as D-finite power-series. We rewrite the system (3.7) as fol-
lows.

pn(u)Rn(u, ϕ) + pn−1(u)Rn−1(u, ϕ) + · · ·
+ p1(u)R1(u, ϕ) + p0(u)R0(u, ϕ) = 0,

(3.8)

where Ri ∈ C[u, ϕ] (i = 0, . . . , n) are residuals of φi by
F (u, ϕ) w.r.t. ϕ.

Lemma 3. We have

degϕ(Ri) ≤ n − 1
degu(Ri) ≤ 2(n2 − n + 1)e − i

(i = 0, . . . , n).

Proof. As in the proof of the lemma 2, we can rewrite
φi as follows.

φi =



D(u, ϕ)2n−1ϕ (i = 0),

D(u, ϕ)2(n−i)Ni(u, ϕ) (i = 1, . . . , n).

For each divisions by F (u, ϕ), a degree of a residual is in-
creased by e. The lemma follows from a summation of all
the increase degrees.

Theorem 2. The polynomials p0, . . . , pn satisfy the fol-
lowing degree bounds.

degu(pi) ≤ di(e),

where

di(e) =
1

2
(4en3 − (4e + 1)n2 + (4e − 1)n − 2) + i.

Proof. The linear equation (3.8) must have non-trivial
solutions by the theorem 1. Therefore, the theorem fol-
lows from letting the degrees of pi such that the number
of unknowns is larger than the number of equations: put

degu(p0) = k, degu(p1) = k + 1, degu(p2) = k + 2, . . .,
degu(pn−1) = k + n − 1 and degu(pn) = k + n such that
each products pi(u)Ri(u, ϕ) has the same degree. The sys-
tem (3.8) has (n + 1)(k + 1) + n(n + 1)/2 unknowns and
n(2(n2 − n + 1)e + k + 1) equations, hence the theorem is
proved by solving the following inequality w.r.t. k.

n(2(n2 − n + 1)e + k + 1) ≤ (n + 1)(k + 1) + n(n + 1)/2.

Since the degree bounds di (i = 0, . . . , n) are sufficient de-
gree bounds, actual degrees of polynomials p0, . . ., pn are
equal to or smaller than these bounds as in the example in
the next section. We note that these bounds di can be re-
placed with actual degrees of pi, though all the discussions
in the rest of this paper are based on these sufficient degree
bounds di.

4. RECURSIVE ALGORITHM
A formula to compute coefficients c(k) can be derived from
the relation (1.2) if we have polynomials Pi(k) (i = 0, . . . , b).
However, we do not know those polynomials while we ob-
tained the degree bounds of polynomials p0, . . . , pn in the
previous section. Therefore, we calculate polynomials p0,
. . ., pn by solving the system (3.8), and derive a formula
to compute coefficients of the power-series roots of F (u, x)
by the relation (1.1). To do this, we need to 1) solve the
system (3.8), 2) construct a recursive formula to compute
coefficients, and 3) calculate an initial power-series root up
to enough degree. We have several suitable methods to do
1) and 3). Hence we derive the recursive formula in this
section.

Lemma 4. Suppose that the power-series root ϕ satisfying
the relation (1.1) is already calculated up to degree k − 1 (≥
n−1) w.r.t. u and put ϕ =

Pk
j=0 cju

j and pi =
Pdi

j=0 pi,ju
j.

Then, ck can be computed as the following formula provided
pn,0 6= 0.

ck = −
n
X

t=0

X

i+j=k−t, i,j≥0, j 6=k

j!(k − n)!

(j − n + t)!k!

pn−t,i cj

pn,0
.

Proof. Since the power-series root ϕ is D-finite, it sat-
isfies the relation (1.1). By extracting coefficients of terms
whose degree is k − n w.r.t. u from the expression (1.1), we
have

n
X

t=0

X

i+j=k−t, i,j≥0

j!

(j − n + t)!
pn−t,i cj = 0.

Solving the above equation w.r.t. ck gives us the following
solution.

ck = −
Pn

t=0

P

i+j=k−t, i,j≥0, j 6=k
j!

(j−n+t)!
pn−t,i cj

k!
k−n!

pn,0

.

The lemma follows from simplifying the above solution.

Corollary 1. If the power-series root ϕ is calculated up
to degree k − 1 (≥ dn − 1) w.r.t. u, and pn,0 6= 0, then we



have the following formula to compute ck.

ck = −

 

Pn
t=1

Pdn−t

i=0
(k−i−t)!
(k−i−n)!

pn−t,i ck−t−i

+
Pdn

i=1
(k−i)!

(k−i−n)!
pn,i ck−i

!

k!
(k−n)!

pn,0

.

We note that the above formula is corresponding to a quo-
tient of the expression in the definition 2 by Pb(k), since the
formula for ck in the corollary 1 is a linear sum of products
of functions in k and ci (i < k).

We simplify the formula in the corollary 1 as the follow-
ing expression (4.1), and give an algorithm to compute the
power-series roots.

− 1
pn,0

(
Pn

t=1

Pdn−t

i=0
(k−i−t)!
(k−i−n)!

(k−n)!
k!

pn−t,i ck−t−i

+
Pdn

i=1
(k−i)!

(k−i−n)!
(k−n)!

k!
pn,i ck−i).

(4.1)

Algorithm 1. (D-finite Power-Series Roots Expansion)

Input : a polynomial F (u, x) and a cutoff degree E

Output : the power-series roots of F (u, x) up to E

Step 1 Solve the system (3.8), calculate p0, . . ., pn, and
construct a recursive formula (4.1).

Step 2 Expand the power-series roots by the conventional
methods up to actual degree (dn − 1) w.r.t. u.

Step 3 While k ≤ E, for each power-series roots, compute
ck by the formula (4.1) and let k = k + 1.

Step 4 Output the computed power-series roots and finish
the algorithm.

We note that the computational cost of each coefficients
is O(en5) complexity over C at worst. This cost does not
depend on the cutoff degree or iteration index k while the
conventional methods do. Hence the total computational
cost of the step 3 is linear w.r.t. cutoff degree bound E.

Corollary 2. The coefficient ck of terms whose degree
is k (≥ dn), of the power-series root ϕ of F (u, x), does not
depend on coefficients: c0, c1, . . ., ck−dn−1.

Corollary 3. Each the power-series roots of F (u, x) has
the same P-recursive relation and can be computed by the
same formula.

In the Stanley’s book [7], the given polynomial is supposed
to be irreducible, and there is not any notes for reducible
polynomials. If the given polynomial is reducible, the power-
series roots of F (u, x) also satisfy the all of the above expres-
sions corresponding to polynomial factors of F (u, x), which
has the root.

Example 1. We give an example of the algorithm 1 for
the simple bivariate polynomial F (u, x) = x2 − u − 1.

As the initialization step, We compute degree bounds of
polynomials p0, p1 and p2. These bounds are d0 = 8, d1 = 9
and d2 = 10 since we have n = 2 and e = 1.

In the step 1, we solve the system (3.8), calculate p0, . . .,
pn, and construct a recursive formula (4.1). At first, we
differentiate the power-series root ϕ as follows.

ϕ(1) = 1
2ϕ

,

ϕ(2) = − 1
4ϕ3 .

The least common denominator of the above derivatives is
4ϕ3. Hence we have the following system.

p2R2 + p1R1 + p0R0 = 0,
R2 = −1, R1 = 2 + 2u, R2 = 4 + 8u + 4u2.

According to the above system, we refine the degree bounds
as d0 = 0, d1 = 1 and d2 = 2, and we have the following
solution (we note that there are other solutions).

p0 = −1, p1 = 3 + 3u, p2 = 2 + 4u + 2u2.

Therefore, we have the following recursive formula of ck.

ck = (
5

2k
− 2)ck−1 + (

5

2k
− 1)ck−2.

In the step 2, we calculate the power-series roots ϕ1(u) and
ϕ2(u) up to degree dn − 1 = 1 as follows.

ϕ1 = −1 − 1/2u,
ϕ2 = 1 + 1/2u.

In the step 3, we compute coefficients of the power-series
roots, using the above recursive formula.

ϕ1 → {−1,−1/2, 1/8,−1/16, 5/128,−7/256, . . .},
ϕ2 → {1, 1/2,−1/8, 1/16,−5/128, 7/256, . . .}.

In this case, by solving the above recursive formula, we can
derive the following general expression for all the coefficients.

ck = ±
(−4)−k

`

2k
k

´

1 − 2k
.

Example 2. We give another example of a recursive for-
mula for the following bivariate polynomial which is re-
ducible and monic w.r.t. x.

F (u, x) = x5 − (u − 1)x3 − (u + 1)x2 + u2 − 1.

We have the following recursive formula for F (u, x).

ck = − 1
6k

ck−1

+−984+2170k−1853k2+767k3−154k4+12k5

12k(24−50k+35k2−10k3+k4)
ck−2

+ 35352−30990k+8994k2−864k3

10368k(24−50k+35k2−10k3+k4)
ck−3

+ 1276−607k+72k2

10368k(24−50k+35k2−10k3+k4)
ck−4

+ 176−65k+6k2

10368k(24−50k+35k2−10k3+k4)
ck−5.

Moreover, the above polynomial is factorized as F (u, x) =
(x3 −u−1)(x2 −u+1), and we have the following recursive
formulas for x3 − u − 1 and x2 − u + 1, respectively.

ck = 4−3k
3k

ck−1 − 1
k(k−1)

ck−2 + 10−3k
3k(k2−3k+2)

ck−3,

ck = 2k−5
2k

ck−1 + 2k−5
2k(k−1)

ck−2.



Remark 1. As in the previous and this sections, we can
also calculate degree bounds of polynomials P0, . . . , Pb and
give an alternative algorithm to construct the recursive for-
mula (4.1) directly, using the relation (1.2). However, this
idea is not efficient because we have to solve a linear system
over C even if the given polynomial is over R or Q.

5. APPLICATION
As shown in the previous sections, considering the power-
series roots as D-finite power-series gives us useful proper-
ties. Especially the corollaries 2 and 3 are useful for discus-
sions about some theories using the power-series roots. In
this section, we give such an application of the properties.

Recently, we have several approximate factorization algo-
rithms, moreover, one algorithm using zero-sum relations is
practical, which is studied by Sasaki [3]. One may think to
use the zero-sum relations for exact ones. In fact, Sasaki and
et al. [5, 6, 4] studied such an exact factorization algorithm.
However, they have not done the proof of completeness of
the main theorem which is a key of their algorithm. We give
the proof by the properties of D-finite power-series in this
section, even though a bivariate case only.

5.1 Known Theorem To Be Proved
We use the following notations.

• dF ea = the sum of terms of total-degrees ≤ a, of F ;

• bF cb = the sum of terms of total-degrees ≥ b, of F ;

• [F ]ab = dbF cbea;

Let the truncated power-series roots of F (u, x) w.r.t. the
main variable x be ϕ1(u), . . . , ϕn(u) and the cutoff degree
be E, satisfying

F (u, x) ≡ fn(u)(x − ϕ1(u)) · · · (x − ϕn(u)) (mod uE+1).

We suppose that F (0, x) is square-free w.r.t. x and put
degu(fi) = ei (i = n, n − 1, . . . , 0) hence max{en, . . . , e0} =
e = degu(F ).

Definition 3. Let H be a two-dimensional convex hull
such that points (0, 0), (0, e0), (1, e1), . . ., (n, en) and (n, 0)
are on H. We define a number ē such that a point (n− 1, ē)
is on the upper edges of H.

Theorem 3 (Theorem 1 in [3]). Let the cutoff degree
E = nē and h1(u), . . . , hm(u) ∈ C[u], and suppose that we
have the relations
8

>

<

>

:

dfn · (ϕ1
1 + · · · + ϕ1

m)enē = h1(u), degu(h1) ≤ 1ē,
...

...
dfm

n · (ϕm
1 + · · · + ϕm

m)enē = hm(u), degu(hm) ≤ mē.

Then, P = fn · (x − ϕ1) · · · (x − ϕm) is a polynomial factor
of fnF (u, x), and vice versa.

Although the theorem 3 has been proved and the approxi-
mate factorization method [3] is practical, we need to prove

the following alternative theorem 4 to use the exact version
of algorithm because the algorithm finds those linear de-
pendent relations in the theorem 4 instead of the relations
in the theorem 3, indirectly. The theorem 4 has not been
proved for any polynomial cutoff degree E, even though the
theorem has been proved [5] for infinite cutoff degree E by
the Galois theory.

Theorem 4 (Theorem 5.3 in [5]). For each j in {1,
. . . , n}, let λj ∈ C, hj(u) ∈ C[u] and degu(hj) ≤ jē. Let the
power-series roots ϕ1(u), . . . , ϕn(u) of F (u, x) satisfy (some
of λ1, . . . , λn may be 0)
8

>

>

<

>

>

:

λ1d(fnϕ1)
1eE + · · · + λnd(fnϕn)1eE = h1(u),

λ1d(fnϕ1)
2eE + · · · + λnd(fnϕn)2eE = h2(u),

· · · · · ·
λ1d(fnϕ1)

neE + · · · + λnd(fnϕn)neE = hn(u).

This system holds iff, among the elements of {λ1, . . . , λn},
all the elements that correspond to the roots of each irre-
ducible factor in C[u, x], of F (u, x) are the same.

The above theorem 4 for a polynomial cutoff degree E guar-
antees that the exact version of the zero-sum factorization
algorithm can find correct factors. We give the proof for
certain finite cutoff degrees in the next subsection.

Remark 2. Sasaki’s approximate factorization method [3]
uses some sub-routines to find linear dependent relations.
We note that there might exist another way to prove com-
pleteness of the algorithm.

5.2 Proof Of The Theorem 4
The theorem 4 was proved by Sasaki et al. [5] with E → ∞
using the Galois theory. Hence, in this section, we prove
that a polynomial cutoff degree case can be treated as same
as the case E → ∞. We use the following useful lemmas
(the latter lemma 6 is proved by Sasaki et al. [4]).

Lemma 5 (Newton’s formula). Let Si(X1, . . . , Xm)
and Pi(X1, . . . , Xm) (i = 1, . . . , m) be defined as follows (Si

is the elementary symmetric polynomial of degree i).
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>
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>

:

S1(X1, . . . , Xm) = X1 + X2 + · · · + Xm,
S2(X1, . . . , Xm) = X1X2 + · · · + X1Xm

+ · · · + Xm−1Xm,
...

Sm(X1, . . . , Xm) = X1X2 · · ·Xm−1Xm,
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<

>

>

>

:

P1(X1, . . . , Xm) = X1 + X2 + · · · + Xm,
P2(X1, . . . , Xm) = X2

1 + X2
2 + · · · + X2

m,
...

Pm(X1, . . . , Xm) = Xm
1 + Xm

2 + · · · + Xm
m .

Then, for any integer i, 1 ≤ i ≤ m, we have

Pi −Pi−1S1 +Pi−2S2 −· · ·+(−1)i−1P1Si−1 +(−1)iiSi = 0.

Lemma 6. Assume that the polynomial factor G(u, x) of
fnF (u, x) is given as

G(u, x) = fn · (x − ϕ1) · · · (x − ϕm).



Then, we have the following degree bounds for the sum of
powers of roots.

degu( (fnϕ1)
i + · · · + (fnϕm)i ) ≤ iē (i = 1, . . . , m).

We consider the polynomials Fi(u, x) of degree n w.r.t. x,
whose roots are ϕi

1,. . .,ϕ
i
n. Substituting X1 = fnϕ1, . . .,

Xn = fnϕn and Xn+1 = 0, . . ., Xn2 = 0 in the lemma 5, we
have the following degree bounds by the lemma 6.

degu( (fnϕ1)
j + · · · + (fnϕn)j ) ≤ jē (j = 1, . . . , n2).

By the lemma 5, we also have

degu(Fi(u, x)) ≤ niē, Fi(u, x) = f i
n(x − ϕi

1) · · · (x − ϕi
n).

By applying the corollaries 2 and 3 to Fi(u, x), we have that
coefficients of terms whose degrees are equal to or larger
than dn(niē) + nē does not depend on coefficients of terms
whose degrees are equal to or less than nē, and coefficients of
terms whose degrees are equal to or larger than dn(niē)+nē,
of the power-series roots, have the same linear dependent
relations for coefficients of terms whose degrees are less than
dn(niē)+nē and equal to or larger than nē. Therefore, there
must not exist any other linear independent relations on
coefficients of powers of the power-series roots if we calculate
the power-series roots up to the following degree.

dn(niē)+nē = 2iēn4−2iēn3+
(4iē − 1)

2
n2+

(2ē − 1)

2
n+i−1.

We use the largest degree dn(n2ē)+ nē as the cutoff degree.
This means that the theorem 4 is equal to the theorem with
E → ∞. Therefore, the theorem 4 is proved for the polyno-
mial cutoff degree E as follows.

dn(n2ē) + nē = 2ēn5 − 2ēn4 + 2ēn3 − 1

2
n2 +

(2ē + 1)

2
n − 1.

We note that we can decrease the cutoff degree dn(n2ē)
by O(en4) if the given polynomial is monic w.r.t. x, since
D(u, ϕ) becomes a monic polynomial w.r.t. ϕ and leading
terms w.r.t. degree bounds, of Ni(u, ϕ) are 0.

6. CONCLUSION
Applying concepts, D-finite power-series and P-recursive se-
quences, to the power-series roots of bivariate polynomials,
give us new polynomially recursive algorithm to compute
the power-series roots. Although the new algorithm has a
weak point that we have to calculate a polynomially recur-
sive formula (4.1) by differentiating and solving the system
(3.8) as initial computations, its computational cost is lin-
ear w.r.t. the given cutoff degree. The algorithm is useful
to compute the power-series roots up to higher degrees than
n, the degree of the given polynomial w.r.t. the main vari-
able. For some cases, we can construct general expressions
of coefficients of power-series roots from recursive formulas.
Moreover, these discussions also give us useful properties of
the power-series roots. The proof in the section 5 is such an
application use.

We can expand the D-finite power-series roots to multivari-
ate polynomials and derive similar degree bounds and a mul-
tivariate version of the algorithm, using definitions of mul-
tivariate D-finite power-series and P-recursive functions by

Lipshitz [2]. In fact, we have a result similar to the bi-
variate case though it is complicated. These results will be
published in the future.
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